
Probabilistic programming using first-class stores
and first-class continuations

Oleg Kiselyov
FNMOC

oleg@pobox.com

Chung-chieh Shan
Rutgers University

ccshan@cs.rutgers.edu

Abstract
Probabilistic inference is a popular way to deal with uncertainty in
many areas of science and engineering. Following the declarative
approach of expressing probabilistic models and inference algo-
rithms as separate, reusable modules, we built a probabilistic pro-
gramming language as an OCaml library and applied it to several
problems. We describe this embedded domain-specific language
using aircraft tracking as an example. We focus on our use of first-
class stores and first-class continuations to perform faster inference
(with local laziness and full-speed determinism) and express more
models (with stochastic memoization and nested inference).

Description
Uncertainty is a pressing concern in many areas of science and
engineering, such as computational linguistics, biology, and eco-
nomics. Probabilistic inference is a popular way to deal with un-
certainty. Conceptually, a program for probabilistic inference com-
bines a probabilistic model with an inference algorithm, just as a
search program combines a search space with a search strategy.
For example, it is typical to compute the expected value of a ran-
dom variable over a conditional distribution. That is analogous to
querying a logic program and tallying the solutions.

To make programs for probabilistic inference easier to develop
and maintain, we and many other practitioners want to write them
declaratively—that is, by expressing models and inference as sep-
arate, reusable modules. To this end, we built a probabilistic pro-
gramming language HANSEI as an OCaml library and applied it
to several problems (Kiselyov and Shan 2009a,b). Figure 1 shows
a simple piece of code that uses our library. In this talk, we de-
scribe this embedded domain-specific language. We focus on how
we implemented it using facilities that OCaml should provide. In
particular, we explain for the first time our crucial use of first-class
stores (Morrisett 1993) and first-class continuations to implement
laziness efficiently while models express nested nondeterminism.

As a running example, we use Milch et al.’s model of radar blips
for aircraft tracking (2007). In this model, a bitmap radar screen
monitors a region in the air with an unknown number of planes that
move and turn randomly. At each time step, each plane causes a blip
on the screen with a certain probability. Due to limited resolution,
several planes may result in a single blip. Blips may also be caused
by noise. The first problem is to estimate the number of planes from
blips and their absence in consecutive radar screenshots. A further
step is to identify the planes as they appear and disappear. For
example, when our modular combination of model and inference is
presented with the 3 consecutive observations depicted in Figure 2,
it estimates that there are 3 planes with probability 0.987.

All inference algorithms rely on representing and exploring
multiple hypotheses. We represent hypotheses as first-class con-
tinuations and manage their exploration by reifying the state of the

probabilistic model into a tree of possible execution paths (Filinski
1994). This technique improves performance because determinis-
tic parts of the model run at the full speed of compiled code. It also
improves expressivity by letting the model invoke existing libraries,
including inference itself. It is by nesting inference in the model in
this way that we implemented the particle filter that computed the
probability estimates in Figure 2. Nested inference also allows one
agent to reason about another’s reasoning, for instance to plan a
flying formation likely to produce a misleading radar screen.

To stay tractable, inference must refine one hypothesis into mul-
tiple hypotheses for separate consideration not when a random
choice is made by the model but when it is observed with a query.
For example, the aircraft tracking program should not enumerate
all possible sets of plane locations right away, but rather determine
the locations gradually as it iterates over radar-screen observations.
This crucial optimization amounts to lazy evaluation, but we can-
not use OCaml’s (or ML’s or Haskell’s) built-in lazy evaluation or
mutable state, because the random choices memoized within one
hypothesis must not pollute the inference about other hypotheses.
Thus, we need to associate each execution path with a first-class
store (Morrisett 1993) in order to combine laziness and nondeter-
minism (Fischer et al. 2009). A first-class store is a region of muta-
ble objects that can be captured and restored together. Using first-
class stores, we can also perform stochastic memoization in models
to express nonparametric distributions succinctly.

We implement first-class stores as immutable maps, and as-
sociate one with each delimited continuation. In the presence of
nested inference, accessing a memo cell requires traversing the
chain of currently active delimited continuations to find the first-
class store that contains the cell. We found this simulation of de-
limited dynamic binding (Kiselyov et al. 2006) to be more efficient
in practice than the previous translation from dynamic bindings to
control delimiters. Probabilistic programming thus provides new-
found motivation for general-purpose programming languages, es-
pecially their garbage collectors, to support first-class stores.

References
Filinski, Andrzej. 1994. Representing monads. In POPL, 446–457.
Fischer, Sebastian, Oleg Kiselyov, and Chung-chieh Shan. 2009. Purely

functional lazy non-deterministic programming. In ICFP, 11–22.
Kiselyov, Oleg, and Chung-chieh Shan. 2009a. Embedded probabilistic

programming. In Domain-specific languages, 360–384. LNCS 5658.
———. 2009b. Monolingual probabilistic programming using generalized

coroutines. In Uncertainty in artificial intelligence, 285–292.
——— and Amr Sabry. 2006. Delimited dynamic binding. In ICFP, 26–37.
Milch, Brian, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L.

Ong, and Andrey Kolobov. 2007. BLOG: Probabilistic models with
unknown objects. In Introduction to statistical relational learning, ed.
Lise Getoor and Ben Taskar, chap. 13, 373–398. Cambridge: MIT Press.

Morrisett, J. Gregory. 1993. Refining first-class stores. In Proceedings of
the ACM SIGPLAN workshop on state in programming languages.



type gender = Female | Male
normalize (exact_reify (fun () ->

let kid = memo (fun n -> dist [(0.5, Female); (0.5, Male)]) in
if kid 1 = Male && kid 2 = Male then fail () else kid 1))

Figure 1. Using our OCaml library to solve one interpretation of the following puzzle: I have exactly two kids; at least one of them is a
girl; what is the probability that my older kid is a girl? (The answer is 2/3.) Our library provides the functions normalize to normalize a
probability table, exact_reify to perform exact inference, memo to memoize a function, dist to make a random choice, and fail to reject
a hypothesis inconsistent with observation.

model

Number of planes
0 1 2 3 4 5 6 7

Pr
ob

ab
ili

ty
=
.8

50

Radar screen observed at t = 1

infer

Number of planes
1 2 3 4 5 6

Pr
ob

ab
ili

ty
≈
.8

35

Radar screen observed at t = 2

infer

Number of planes
1 2 3 4

Pr
ob

ab
ili

ty
≈
.9

86

Radar screen observed at t = 3

infer

Number of planes
3 4

Pr
ob

ab
ili

ty
≈
.9

87
· · ·

Figure 2. A sample run of aircraft tracking using radar blips. At the top are consecutively observed radar screens. At the bottom are
consecutive distributions of the number of planes, first stipulated by the model then gradually computed by our approximate inference.


