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Probabilistic inference

Model (what) Inference (how)
Pr(Reality)

Pr(Obs | Reality) Pr(Reality | Obs = obs)
obs

Pr(Obs = obs | Reality) Pr(Reality)
Pr(Obs = obs)
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Declarative probabilistic inference
Model (what)

Toolkit invoke —
(BNT, PFP)

Language random choice,
(BLOG, IBAL, observation, ...
Church)

Inference (how)

distributions,
conditionalization, ...

< interpret
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Declarative probabilistic inference

Toolkit
(BNT, PFP)

Language
(BLOG, IBAL,
Church)

Model (what)

+ use existing libraries,
types, debugger

+ random variables are
ordinary variables

Inference (how)

+ easy to add custom
inference

+ compile models for
faster inference
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Declarative probabilistic inference

Model (what) Inference (how)
Toolkit + use existing libraries, + easy to add custom
(BNT, PFP) types, debugger inference
Language + random variables are + compile models for
(BLOG, IBAL, ordinary variables faster inference
Church)
Today: invoke — < interpret

Best of both

Express models and inference as interacting programs
in the same general-purpose language.
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Declarative probabilistic inference

Model (what) Inference (how)
Toolkit + use existing libraries, + easy to add custom
(BNT, PFP) types, debugger inference
Language + random variables are + compile models for
(BLOG, IBAL, ordinary variables faster inference
Church)
Today: Payoff: expressive model Payoff: fast inference
Best of both + models of inference: + deterministic parts of
bounded-rational models run at full speed
theory of mind + importance sampling

Express models and inference as interacting programs
in the same general-purpose language.
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Outline

» Expressivity
Nested inference

Implementation
Reifying a model into a search tree
Importance sampling with look-ahead

Performance
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Hidden Markov model
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Hidden Markov model
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Hidden Markov model

type state = int type obs = L | R let nstates = 8
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Hidden Markov model

type state = int type obs = L | R let nstates = 8

let tramsition_prob = [| [(0.7,0); (0.3,1)]; ... |]
let evolve : state -> state = fun st ->
dist (transition_prob. (st))
let observe : state -> obs = fun st ->
let p = float st /. float (nstates - 1) in
dist [(1.-.p, L); (p, R)]
let rec run = fun n obs ->
let st = if n = 1 then uniform nstates else
evolve (run (n - 1) obs) in
obs st n; st
run 5
(fun st n -> if n = 4 && observe st <> L then fail ())

Models are ordinary code (in OCaml) using a library function dist.
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type state = int type obs = L | R let nstates = 8

let tramsition_prob = [| [(0.7,0); (0.3,1)]; ... |]
let evolve : state -> state = fun st ->
dist (transition_prob. (st))
let observe : state -> obs = fun st ->
let p = float st /. float (nstates - 1) in
dist [(1.-.p, L); (p, R)]
let rec run = fun n obs ->
let st = if n = 1 then uniform nstates else
evolve (run (n - 1) obs) in
obs st n; st
normalize (exact_reify (fun () -> run 5
(fun st n -> if n = 4 && observe st <> L then fail ())))

Models are ordinary code (in OCaml) using a library function dist.
Inference applies to a thunk and returns a distribution.
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type state = int type obs = L | R let nstates = 8

let tramsition_prob = [| [(0.7,0); (0.3,1)]; ... |]
let evolve : state -> state = fun st ->
dist (transition_prob. (st))
let observe : state -> obs = fun st ->
let p = float st /. float (nstates - 1) in
dist [(1.-.p, L); (p, R)]
let rec run = fun n obs ->
let st = if n = 1 then uniform nstates else
evolve (run (n - 1) obs) in
obs st n; st
normalize (exact_reify (fun () -> run 5
(fun st n -> if n = 4 && observe st <> L then fail ())))

Models are ordinary code (in OCaml) using a library function dist.
Inference applies to a thunk and returns a distribution.

Deterministic parts of models run at full speed. 4



Models as programs in a general-purpose language

Reuse existing infrastructure!

vV v v v v Yy

Rich libraries: lists, arrays, database access, /0O, ...
Type inference

Functions as first-class values

Compiler

Debugger

Memoization

Express Dirichlet processes, etc. (Goodman et al. 2008)

Speed up inference using lazy evaluation
bucket elimination

sampling w/memoization (Pfeffer 2007)
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Self application: nested inference

Choose a coin that is either fair or completely biased for true.

let biased = flip 0.5 in
let coin = fun () -> flip 0.5 || biased in
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Self application: nested inference

Choose a coin that is either fair or completely biased for true.

let biased = flip 0.5 in
let coin = fun () -> flip 0.5 || biased in

Let p be the probability that flipping the coin yields true.

What is the probability that p is at least 0.3?
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Self application: nested inference

Choose a coin that is either fair or completely biased for true.

let biased = flip 0.5 in
let coin = fun () -> flip 0.5 || biased in

Let p be the probability that flipping the coin yields true.

What is the probability that p is at least 0.3?
Answer: 1.

at_least 0.3 true (exact_reify coin)
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Self application: nested inference

exact_reify (fun (O ->

let biased = flip 0.5 in
let coin = fun () -> flip 0.5 || biased in
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Self application: nested inference

exact_reify (fun () ->
Choose a coin that is either fair or completely biased for true.

let biased = flip 0.5 in
let coin = fun () -> flip 0.5 || biased in

Let p be the probability that flipping the coin yields true.
Estimate p by flipping the coin twice.
What is the probability that our estimate of p is at least 0.3?

Answer: 7/8.

at_least 0.3 true (sample 2 coin) )
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Self application: nested inference

exact_reify (fun O ->
Choose a coin that is either fair or completely biased for true.

let biased = flip 0.5 in
let coin = fun () -> flip 0.5 || biased in

Let p be the probability that flipping the coin yields true.
Estimate p by flipping the coin twice.

What is the probability that our estimate of p is at least 0.3?
Answer: 7/8.

at_least 0.3 true (sample 2 coin) )

Returns a distribution—not just nested query (Goodman et al. 2008).
Inference procedures are OCaml code using dist, like models.
Works with observation, recursion, memoization.

Bounded-rational theory of mind without interpretive overhead. 14



Outline

Expressivity
Nested inference

» Implementation
Reifying a model into a search tree
Importance sampling with look-ahead

Performance
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Reifying a model into a search tree

.3 .T .5

false

/ﬁ .%\ /P .%\

true

Exact inference by depth-first brute-force enumeration.
Rejection sampling by top-down random traversal.
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Reifying a model into a search tree

open

Exact inference by depth-first brute-force enumeration.
Rejection sampling by top-down random traversal.
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Reifying a model into a search tree

closed

TN

/.3 |2 .5\

open false open

Exact inference by depth-first brute-force enumeration.

Rejection sampling by top-down random traversal.
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Reifying a model into a search tree

closed

TN

3 2 5
A N
closed false closed

/\ /\
8 .2 6 .3
/N /N

true open open open

Exact inference by depth-first brute-force enumeration.
Rejection sampling by top-down random traversal.
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Reifying a model into a search tree

closed

TN

3 2 5
A N
closed false closed

/\ /\
8 .2 6 .3
/N /N

true closed open open

Exact inference by depth-first brute-force enumeration.
Rejection sampling by top-down random traversal.
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Reifying a model into a search tree

reify

open unit ->bool

. /'2\ . reflect
A N
closed false closed

/\ /\
8 .2 6 .3
/N /N

true closed open open

Inference procedures cannot access models’ source code.
Reify then reflect (materialized views):
» Brute-force enumeration becomes bucket elimination
» Sampling becomes particle filtering
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Reifying a model into a search tree

reify
-
open
reflect

unit ->bool

Implementation:

» represent a probability and state monad
(Giry 1982, Moggi 1990, Filinski 1994)

» using first-class delimited continuations
(Strachey & Wadsworth 1974,
Felleisen et al. 1987,
Danvy & Filinski 1989)
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Reifying a model into a search tree

open

reify
-
\_/
reflect

Implementation: shallow DSL embedding

let dist ch
let literal x
let app e0 el

List.map ... ch
unit x

bind e0 (funf -> bind el (funx-> f x))

Continuation-passing style

let dist ch
let literal x
let app e0 el

funk -> List.map ...k...

funk-> k x

funk-> e0 (funf-> el (funx-> f x k))

First-class delimited continuations

let dist ch
let literal x
let app €0 el

shift (funk -> List.map ..

X
el el

ch

unit ->bool

koo

ch)
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Reifying a model into a search tree

reify
/\
open
reflect

unit ->bool

Implementation: using clonable user-level threads

» Model runs inside a thread.

» dist clones the thread.

» fail kills the thread.

» Memoization mutates thread-local storage.
Analogy: Virtualize (not emulate) a CPU. Nesting works.
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Importance sampling with look-ahead

open Probability mass p. = 1
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Importance sampling with look-ahead

closed Probability mass p. = 1

TN

///3 .T .5\\\

open false open

1. Expand one level.
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Importance sampling with look-ahead

closed Probability mass p. = 1
///P\\ (.2, false)
3 2 .5

A N

open false  open

1. Expand one level.
2. Report shallow successes.
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Importance sampling with look-ahead

closed Probability mass p. = .75
ﬂ\ (.2, false)
3 2 5

TN
.3closed false .45closed

/\ /\
8 .2 6 .3
/N /N

true open open open

1. Expand one level.
2. Report shallow successes.
3. Expand one more level and tally open probability.
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Importance sampling with look-ahead

closed Probability mass p, = .75
/’\ (.2, false)
.3 2 .5

VA RN
closed false closed

/\ /\
8 .2 6 .3
/N /N

true open open open

Expand one level.

Report shallow successes.

Expand one more level and tally open probability.
Randomly choose a branch and go back to 2.

oo
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Importance sampling with look-ahead

closed Probability mass p, = .75
.3/12\.5 (.2, false) (.6, true)

VA RN
closed false closed

/\ /\
8 .2 6 .3
/N /N

true open open open

Expand one level.

Report shallow successes.

Expand one more level and tally open probability.
Randomly choose a branch and go back to 2.

M own =
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Importance sampling with look-ahead

closed Probability mass p. = 0
.3/12\.5 (.2, false) (.6, true)

VA RN
closed false closed

/\ /\
8 .2 6 .3
/N /N

true Oclosed open open

Expand one level.

Report shallow successes.

Expand one more level and tally open probability.
Randomly choose a branch and go back to 2.

oo n =
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Importance sampling with look-ahead

closed Probability mass p. = 0
.3/21\.5 (.2, false) (.6, true)

VA RN
closed false closed

/\ /\
8 .2 6 .3
/N /N

true closed open open

Expand one level.

Report shallow successes.

Expand one more level and tally open probability.
Randomly choose a branch and go back to 2.

M own =
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Outline

Expressivity
Nested inference

Implementation
Reifying a model into a search tree
Importance sampling with look-ahead

» Performance
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Motivic development in Beethoven sonatas (Pteffer 2007)
o) |

"4 |

Source motif
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Motivic development in Beethoven sonatas (Pteffer 2007)
f) | |

"4 |
Source motif o
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Motivic development in Beethoven sonatas (Pfeffer 2007)

) |
. )" 4 |
Source motif i —
| | | N
_/ — N,
; - 7
infer \ /N S—
f) | | |
)" 4 | | |
/\

Destination motif ¢y
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Motivic development in Beethoven sonatas (Pfeffer 2007)

) |
. )" 4 |
Source motif i —
| | | \_ '/
_/ — N,
- - 7
infer \ /N S—
f) | | |
)" 4 | | |
/\

Destination motif ¢y

Implemented using lazy stochastic lists.

Motif pair 1 2 3 4 5 6 7

% correct using importance sampling

o Pfeffer 2007 (30sec) 93 100 28 80 98 100 63
This paper (90sec) 98 100 29 87 94 100 77

e Thispaper (30sec) 92 99 25 46 72 95 61
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Motivic development in Beethoven sonatas

Frequency in 100 trials

40

35

30

25

20

15

10

(Pfeffer 2007)

|BAL o

90 seconds
30 seconds n——

-19

-18 -17 -16 -15

InPriD=1|S=1)

-14

-13
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Noisy radar blips for aircraft tracking (Milch et al. 2007)

=
5
3]
infer 8
a
01234567
Blips present and absent Number of planes

Particle filter. Implemented using lazy stochastic coordinates.
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3]
infer 8
a
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Blips present and absent Number of planes

t=1
Particle filter. Implemented using lazy stochastic coordinates.
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Noisy radar blips for aircraft tracking (Milch et al. 2007)

=
E
= 3]
infer 8
a
12 3 4
Blips present and absent Number of planes

t=2
Particle filter. Implemented using lazy stochastic coordinates.
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Noisy radar blips for aircraft tracking (Milch et al. 2007)

=
E
= 3]
infer 8
a
3 4
Blips present and absent Number of planes

t=3
Particle filter. Implemented using lazy stochastic coordinates.
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Declarative probabilistic inference

Model (what) Inference (how)
Toolkit + use existing libraries, + easy to add custom
(BNT, PFP) types, debugger inference
Language + random variables are + compile models for
(BLOG, IBAL, ordinary variables faster inference
Church)
Today: Payoff: expressive model Payoff: fast inference
Best of both + models of inference: + deterministic parts of
bounded-rational models run at full speed
theory of mind + importance sampling

Express models and inference as interacting programs
in the same general-purpose language.
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