
1/24

Back to the model

Jason Perry and Chung-chieh Shan
Rutgers University

July 10, 2011

2/24

Text

Text meaning

Hypothesis

Truth judgment
(model(s)) (and explanation)

This is a workshop talk.

2/24

Text

Text meaning

Hypothesis

Truth judgment

2 1

(model(s)) (and explanation)

This is a workshop talk.

3/24

1. Checking programming homework

Every source file must compile
and you must include a README file
that references all header files.

‘foo.c’ doesn’t compile
and ‘readme.txt’ doesn’t mention ‘bar.c’.

4/24

$./ProGrader
Enter sentence to test:
every source file compiles and "readme.txt" mentions every source file
#-----------Translation-------------
and every [sourcefile] (\x -> (compiles x))

(\x -> every [sourcefile] (\y -> ((mentions y) x)) "readme.txt")
...checking...
#-----------Translated Explanation Tree---------------
a source file doesn’t compile or "readme.txt" doesn’t mention every source file, because

a source file doesn’t compile, because
"nowork2.c" or "nowork.c" or "hello2.c" or "hello.c" don’t compile, because

"nowork2.c" doesn’t compile and
"nowork.c" doesn’t compile and
"hello2.c" compiles and
"hello.c" compiles and

"readme.txt" doesn’t mention every source file, because
"readme.txt" doesn’t mention "nowork2.c" and "nowork.c" and "hello2.c" and "hello.c", because

...snip!...
#----Translated Summary-----

a source file doesn’t compile, because
"nowork2.c" and "nowork.c" don’t compile, and

"readme.txt" doesn’t mention every source file, because
"readme.txt" doesn’t mention "nowork2.c" or "hello2.c"

5/24

System architecture

,
Professor

,
Student

Interpreter

Homework files

Abstract syntax

Natural language Logical language

Summarizer

Grammar

5/24

Logical interpreter

,
Professor

,
Student

Interpreter

Homework files

Abstract syntax

Natural language Logical language

Summarizer

Grammar

6/24

Generalized quantifiers (Barwise & Cooper, Woods)

Every source file compiles
and a text file mentions every source file.

and every [sourcefile]

\x -> (compiles x)

a [textfile]

\x -> every [sourcefile]

\y -> ((mentions y) x)

I Easy interpreter (model checker)
I Domain-specific vocabulary
. checks predicates
. enumerates quantificational domains

7/24

Accumulate evidence

Label each node with a formula and its value.

8/24

Bidirectional grammar

,
Professor

,
Student

Interpreter

Homework files

Abstract syntax

Natural language Logical language

Summarizer

Grammar

9/24

Abstract syntax vs concrete syntax

S! NP

;

VP

"foo.c" compiles

ApplyS "foo.c" Compiles

S1 = NP1 VP1

"foo.c" compiles

S1 = VP1 NP1

Mamaky ny boky "foo.c"

every source file compiles every [sourcefile]
\x -> (compiles x)

S1 = (NP1 VP1)

Grammatical Framework (Ranta) for English logic translation

(\c -> every [sourcefile] \x -> (c x) compiles)

Continuations from programming languages systematize tricks.

9/24

Abstract syntax vs concrete syntax

S! NP;VP

"foo.c" compiles

ApplyS "foo.c" Compiles

S1 = NP1 VP1

"foo.c" compiles

S1 = VP1 NP1

Mamaky ny boky "foo.c"

every source file compiles every [sourcefile]
\x -> (compiles x)

S1 = (NP1 VP1)

Grammatical Framework (Ranta) for English logic translation

(\c -> every [sourcefile] \x -> (c x) compiles)

Continuations from programming languages systematize tricks.

9/24

Abstract syntax vs concrete syntax

S! NP;VP

"foo.c" compiles

ApplyS "foo.c" Compiles

S1 = NP1 VP1

"foo.c" compiles

S1 = VP1 NP1

Mamaky ny boky "foo.c"

every source file compiles every [sourcefile]
\x -> (compiles x)

S1 = (NP1 VP1)

Grammatical Framework (Ranta) for English logic translation

(\c -> every [sourcefile] \x -> (c x) compiles)

Continuations from programming languages systematize tricks.

9/24

Abstract syntax vs concrete syntax

S! NP;VP

"foo.c" compiles

ApplyS "foo.c" Compiles

S1 = NP1 VP1

"foo.c" compiles

S1 = VP1 NP1

Mamaky ny boky "foo.c"

every source file compiles every [sourcefile]
\x -> (compiles x)

S1 = (NP1 VP1)

Grammatical Framework (Ranta) for English logic translation

(\c -> every [sourcefile] \x -> (c x) compiles)

Continuations from programming languages systematize tricks.

9/24

Abstract syntax vs concrete syntax

S! NP;VP

"foo.c" compiles

ApplyS "foo.c" Compiles

S1 = NP1 VP1

"foo.c" compiles

S1 = (VP1 NP1)

(compiles "foo.c")

Mamaky ny boky "foo.c"

every source file compiles every [sourcefile]
\x -> (compiles x)

S1 = (NP1 VP1)

Grammatical Framework (Ranta) for English logic translation

(\c -> every [sourcefile] \x -> (c x) compiles)

Continuations from programming languages systematize tricks.

9/24

Lambda tricks for quantifiers

S! NP;VP

"foo.c" compiles

ApplyS "foo.c" Compiles

S1 = NP1 VP1

"foo.c" compiles

S1 = (VP1 NP1)

(compiles "foo.c")

Mamaky ny boky "foo.c"

every source file compiles every [sourcefile]
\x -> (compiles x)

S1 = (NP1 VP1)

Grammatical Framework (Ranta) for English logic translation

(\c -> every [sourcefile] \x -> (c x) compiles)

Continuations from programming languages systematize tricks.

9/24

Lambda tricks for quantifiers

S! NP;VP

"foo.c" compiles

ApplyS "foo.c" Compiles

S1 = NP1 VP1

"foo.c" compiles

S1 = (VP1 NP1)

(compiles "foo.c")

Mamaky ny boky "foo.c"

every source file compiles every [sourcefile]
\x -> (compiles x)

S1 = (NP1 VP1)

Grammatical Framework (Ranta) for English logic translation

. Which rule to use? . How to normalize?

(\c -> every [sourcefile] \x -> (c x) compiles)

Continuations from programming languages systematize tricks.

9/24

Lambda tricks for quantifiers

S! NP;VP

"foo.c" compiles

ApplyS "foo.c" Compiles

S1 = NP1 VP1

"foo.c" compiles

S1 = (NP1 VP1)

(compiles "foo.c")

Mamaky ny boky "foo.c"

every source file compiles every [sourcefile]
\x -> (compiles x)

S1 = (NP1 VP1)

Grammatical Framework (Ranta) for English logic translation

(\c -> (c "foo.c") compiles)

(\c -> every [sourcefile] \x -> (c x) compiles)

Continuations from programming languages systematize tricks.

9/24

Lambda tricks for quantifiers

S! NP;VP

"foo.c" compiles

ApplyS "foo.c" Compiles

S1 = NP1 VP1

"foo.c" compiles

S1 = (NP1\n->(VP1\v->(v n)))

(compiles "foo.c")

Mamaky ny boky "foo.c"

every source file compiles every [sourcefile]
\x -> (compiles x)

S1 = (NP1\n->(VP1\v->(v n)))

Grammatical Framework (Ranta) for English logic translation

(\c -> (c "foo.c") \c -> (c compiles))

(\c -> every [sourcefile] \x -> (c x) \c -> (c compiles))

Continuations from programming languages systematize tricks.

10/24

Continuations without lambdas

Multiple Context-Free Grammar encodes \c -> 1 (c 2) 3

NP1 =

NP2 = "foo.c"

NP3 =

\c -> (c "foo.c")

NP1 = every [sourcefile] \x ->

NP2 = x

NP3 =

\c -> every [sourcefile]

\x -> (c x)

S1 = NP1 VP1 (VP2 NP2) VP3 NP3 S1 = (NP1\n->(VP1\v->(v n)))

every [sourcefile] \x -> (compiles x)

10/24

Continuations without lambdas

Multiple Context-Free Grammar encodes \c -> 1 (c 2) 3

VP1 =

VP2 = compiles

VP3 =

\c -> (c compiles)

NP1 = every [sourcefile] \x ->

NP2 = x

NP3 =

\c -> every [sourcefile]

\x -> (c x)

S1 = NP1 VP1 (VP2 NP2) VP3 NP3 S1 = (NP1\n->(VP1\v->(v n)))

every [sourcefile] \x -> (compiles x)

10/24

Continuations without lambdas

Multiple Context-Free Grammar encodes \c -> 1 (c 2) 3

VP1 =

VP2 = compiles

VP3 =

\c -> (c compiles)

NP1 = every [sourcefile] \x ->

NP2 = x

NP3 =

\c -> every [sourcefile]

\x -> (c x)

S1 = NP1 VP1 (VP2 NP2) VP3 NP3 S1 = (NP1\n->(VP1\v->(v n)))

every [sourcefile] \x -> (compiles x)

11/24

Negation

I Every text file mentions a source file.
I Not every text file mentions a source file.

A text file doesn’t mention a source file.
A text file mentions no source file.

I Lambda: negation using continuations
I MCFG: normal form is innermost ‘not’ in logic.

Keep primal and dual versions of each formula.

12/24

Explanation summarization

,
Professor

,
Student

Interpreter

Homework files

Abstract syntax

Natural language Logical language

Summarizer

Grammar

13/24

Too verbose
Translate every node of accumulated evidence:

a source file doesn’t compile
or every text file doesn’t mention every source file, because

a source file doesn’t compile, because
"nowork2.c" doesn’t compile and
"nowork.c" doesn’t compile and
"hello2.c" compiles and
"hello.c" compiles and

every text file doesn’t mention every source file, because
"nothing.txt" doesn’t mention every source file, because

"nothing.txt" doesn’t mention "nowork2.c" and
"nothing.txt" doesn’t mention "nowork.c" and
"nothing.txt" doesn’t mention "hello2.c" and
"nothing.txt" doesn’t mention "hello.c" and

"readme.txt" doesn’t mention every source file, because
"readme.txt" doesn’t mention "nowork2.c" and
"readme.txt" mentions "nowork.c" and
"readme.txt" doesn’t mention "hello2.c" and
"readme.txt" mentions "hello.c"

14/24

From evidence trees to explanations
I Present evidence from models

Don’t describe inferences in proofs
I Present only supporting evidence

not every source file compiles, because

"foo.c" compiles and ... ??
Select sentences with same truth value as parent

I Reintroduce generalized quantifiers (conjunctions) to group

"readme.txt" mentions "hello.c" and

"readme.txt" mentions "nowork.c"

"readme.txt" mentions "hello.c" and "nowork.c"

a source file doesn’t compile, because

"nowork2.c" and "nowork.c" don’t compile, and

every text file doesn’t mention every source file, because

"nothing.txt" and "readme.txt" don’t mention

every source file

14/24

From evidence trees to explanations
I Present evidence from models

Don’t describe inferences in proofs
I Present only supporting evidence

not every source file compiles, because

"foo.c" compiles and ... ??
Select sentences with same truth value as parent

I Reintroduce generalized quantifiers (conjunctions) to group

"readme.txt" mentions "hello.c" and

"readme.txt" mentions "nowork.c"

"readme.txt" mentions "hello.c" and "nowork.c"

a source file doesn’t compile, because

"nowork2.c" and "nowork.c" don’t compile, and

every text file doesn’t mention every source file, because

"nothing.txt" and "readme.txt" don’t mention

every source file

15/24

1. Summary

I Adaptable interpreter
I Quantification and negation in a bidirectional grammar
I Concise explanations

16/24

2. Modular meanings

Meaning: all your semantic needs in one place.

Phrase P

Is P consistent?
Is P positive or negative?

Does P entail that it is raining?

Meaning JP K

Phrase Q

Does P entail Q? contradict Q? presuppose Q?

Meaning JQKMeaning JP;QK

Want: open, modular, irredundant semantic vocabulary.
Need: something latent; something factored. Sparsity looms.
Examples: Montague grammar, proof theory, topics and relations.

16/24

2. Modular meanings

Meaning: all your semantic needs in one place.

Phrase P

Is P consistent?
Is P positive or negative?

Does P entail that it is raining?

Meaning JP K

Phrase Q

Does P entail Q? contradict Q? presuppose Q?

Meaning JQKMeaning JP;QK

Want: open, modular, irredundant semantic vocabulary.
Need: something latent; something factored. Sparsity looms.
Examples: Montague grammar, proof theory, topics and relations.

16/24

2. Modular meanings

Meaning: all your semantic needs in one place.

Phrase P

Is P consistent?
Is P positive or negative?

Does P entail that it is raining?

Meaning JP K

Phrase Q

Does P entail Q? contradict Q? presuppose Q?

Meaning JQK

Meaning JP;QK

Want: open, modular, irredundant semantic vocabulary.
Need: something latent; something factored. Sparsity looms.
Examples: Montague grammar, proof theory, topics and relations.

16/24

2. Modular meanings

Meaning: all your semantic needs in one place.

Phrase P

Is P consistent?
Is P positive or negative?

Does P entail that it is raining?

Meaning JP K

Phrase Q

Does P entail Q? contradict Q? presuppose Q?

Meaning JQKMeaning JP;QK

Want: open, modular, irredundant semantic vocabulary.
Need: something latent; something factored. Sparsity looms.
Examples: Montague grammar, proof theory, topics and relations.

16/24

2. Modular meanings

Meaning: all your semantic needs in one place.

Phrase P

Is P consistent?
Is P positive or negative?

Does P entail that it is raining?

Meaning JP K

Phrase Q

Does P entail Q? contradict Q? presuppose Q?

Meaning JQK

Meaning JP;QK

Want: open, modular, irredundant semantic vocabulary.
Need: something latent; something factored. Sparsity looms.
Examples: Montague grammar, proof theory, topics and relations.

17/24

Topics as possible worlds projected?

assume that l consists of the gist of that sequence of words g and
the sense or meaning of each word, z � �z1,z2, . . . ,zn), so l � (g,
z). We can now formalize the three problems identified in the
previous section:

Prediction: Predict wn�1 from w.

Disambiguation: Infer z from w.

Gist extraction: Infer g from w.

Each of these problems can be formulated as a statistical problem.
The prediction problem requires computing the conditional prob-
ability of wn�1 given w, P(wn�1|w). The disambiguation problem
requires computing the conditional probability of z given w,
P(z|w). The gist extraction problem requires computing the prob-
ability of g given w, P(g|w).

All of the probabilities needed to solve the problems of predic-
tion, disambiguation, and gist extraction can be computed from a
single joint distribution over words and latent structures, P(w, l).
The problems of prediction, disambiguation, and gist extraction
can thus be solved by learning the joint probabilities of words and
latent structures. This can be done using a generative model for
language. Generative models are widely used in machine learning
and statistics as a means of learning structured probability distri-
butions. A generative model specifies a hypothetical causal pro-
cess by which data are generated, breaking this process down into
probabilistic steps. Critically, this procedure can involve unob-

served variables, corresponding to latent structure that plays a role
in generating the observed data. Statistical inference can be used to
identify the latent structure most likely to have been responsible
for a set of observations.

A schematic generative model for language is shown in Fig-
ure 4a. In this model, latent structure l generates an observed
sequence of words w � �w1, . . . ,wn). This relationship is illus-
trated using graphical model notation (e.g., Jordan, 1998; Pearl,

D
weightsdi

m
en

si
on

s
topic

distributions

=
documents

U
word
space

=
documents

di
m

en
si

on
s

dimensions

topics

to
pi

cs

(b)

(a)

LSA

Topic model

dimensions

P(z g)

sdro
w

sd ro
w over words

P(w z)

w
or

ds
w

or
ds

X
transformed

word-document
co-occurrence

matrix

P(w g)
probability

distributions
over words

TV
documents

document space

documents

document distributions over topics

Figure 3. (a) Latent semantic analysis (LSA) performs dimensionality reduction using the singular value
decomposition. The transformed word–document co-occurrence matrix, X, is factorized into three smaller
matrices, U, D, and V. U provides an orthonormal basis for a spatial representation of words, D weights those
dimensions, and V provides an orthonormal basis for a spatial representation of documents. (b) The topic model
performs dimensionality reduction using statistical inference. The probability distribution over words for each
document in the corpus conditioned on its gist, P(w|g), is approximated by a weighted sum over a set of
probabilistic topics, represented with probability distributions over words, P(w|z), where the weights for each
document are probability distributions over topics, P(z|g), determined by the gist of the document, g.

Figure 4. Generative models for language. (a) A schematic representa-
tion of generative models for language. Latent structure l generates words
w. This generative process defines a probability distribution over l, P(l),
and w given l, P(w|l). Applying Bayes’s rule with these distributions makes
it possible to invert the generative process, inferring l from w. (b) Latent
Dirichlet allocation (Blei et al., 2003), a topic model. A document is
generated by choosing a distribution over topics that reflects the gist of the
document, g, choosing a topic zi for each potential word from a distribution
determined by g, and then choosing the actual word wi from a distribution
determined by zi.

216 GRIFFITHS, STEYVERS, AND TENENBAUM

18/24

Distributional entailment

Bernardi, Baroni, Ngoc, Shan (work in progress)
I Adjectives: A N < N

I Quantifiers: Q1 N < Q2 N
Q N1 < Q N2

(Avoid consulting corpus for each pair.)

19/24

Adjectives

regular-j_train-n train-n

several-j_bus-n bus-n

Italian-j_motorcycle-n motorcycle-n

Scottish-j_hospital-n hospital-n

black-j_robe-n robe-n

modern-j_hotel-n hotel-n

first-j_violin-n violin-n

international-j_phone-n phone-n

good-j_dress-n dress-n

internal-j_phone-n phone-n

public-j_radio-n radio-n

own-j_horse-n horse-n

young-j_gun-n gun-n

rural-j_bus-n bus-n

friendly-j_pub-n pub-n

fine-j_car-n car-n

several-j_coat-n coat-n

red-j_bed-n bed-n

white-j_box-n box-n

second-j_bottle-n bottle-n

Greek-j_restaurant-n restaurant-n

near-j_train-n train-n

final-j_table-n table-n

international-j_television-n television-n

large-j_elephant-n elephant-n

white-j_blouse-n blouse-n

German-j_radio-n radio-n

large-j_van-n van-n

same-j_pub-n pub-n

several-j_table-n table-n

20/24

Adjectives results

Train / Test S
V

M
(p

ol
yn

om
ia

l)

ba
lA

P
in

c
(K

ot
le

rm
an

&
al

.)

Fr
eq

ue
nc

y
ba

se
lin

e

C
on

st
an

t
ba

se
lin

e

+ 1246 restrictive A N < N
� 1244 checked random A N1 6< N2
+ 1385 WordNet N1 < N2
� 461 WordNet N1 > N2

9=
; 71% 70% 53% 50%

� 924 checked random N1 6< N2

I Almost free training data from restrictive adjectives and
quantifier entailments

I Distributional meanings of composite phrases
I Want to derive meaning representations compositionally

21/24

Quantifiers

many-j several-j YES many-j most-j NO

many-j some-d YES many-j no-d NO

each-d some-d YES both-d many-j NO

most-j many-j YES both-d most-j NO

much-j some-d YES both-d several-j NO

every-d many-j YES either-d both-d NO

all-d many-j YES many-j all-d NO

all-d most-j YES many-j every-d NO

all-d several-j YES few-j many-j NO

all-d some-d YES few-j all-d NO

both-d either-d YES several-j all-d NO

both-d some-d YES some-d many-j NO

several-j some-d YES some-d all-d NO

some-d each-d NO

some-d every-d NO

several-j every-d NO

several-j few-j NO

22/24

Quantifiers results

Train / Test S
V

M
(p

ol
yn

om
ia

l)

ba
lA

P
in

c
(K

ot
le

rm
an

&
al

.)

Fr
eq

ue
nc

y
ba

se
lin

e

C
on

st
an

t
ba

se
lin

e

+ 5806 manual non-‘several’ Q1 N < Q2 N
� 6946 manual non-‘several’ Q1 N 6< Q2 N
�12752 random non-‘several’ Q1 N1 6< Q2 N2
+ 1731 manual ‘several’ Q1 N < Q2 N
� 1509 manual ‘several’ Q1 N 6< Q2 N

9=
; 86% 73% 45% 73%

� 3240 random ‘several’ Q1 N1 6< Q2 N2

+ 7537 manual Q1 N < Q2 N
� 8455 manual Q1 N 6< Q2 N

9=
; 90% 76% 50% 76%

�15992 random Q1 N1 6< Q2 N2

(same 25504=6480 split)

23/24

Quantifier monotonicity

I Upward: some-d several-j these-d those-d

I Downward: few-j all-d no-d every-d

Train / Test S
V

M
(p

ol
yn

om
ia

l)

C
on

st
an

t
ba

se
lin

e

+ 6076 manual + WordNet Q N1 < Q N2
� 6076 random Q N1 6< Q N2

�
67% 50%

(66%=34% split)

24/24

Text

Text meaning

Hypothesis

Truth judgment
(model(s)) (and explanation)

This is a workshop talk.

